Matthew Levine
Matthew Levine
About
Publications
Experience
CV
Light
Dark
Automatic
Publications
Type
Conference paper
Journal article
Book section
Date
2024
2023
2022
2021
2020
2019
2018
2017
2016
Edoardo Calvello
,
Nikola B. Kovachki
,
Matthew E. Levine
,
Andrew M. Stuart
(2024).
Continuum Attention for Neural Operators
. arxiv preprint.
PDF
Cite
Bob Junyi Zou
,
Matthew E. Levine
,
Dessi P. Zaharieva
,
Ramesh Johari
,
Emily Fox
(2024).
Hybrid Square Neural ODE Causal Modeling
. In Review.
PDF
Cite
Jin-Long Wu
,
Matthew E. Levine
,
Tapio Schneider
,
Andrew Stuart
(2023).
Learning About Structural Errors in Models of Complex Dynamical Systems
. In Review.
PDF
Cite
Jacob Parres-Gold
,
Matthew E. Levine
,
Benjamin Emert
,
Andrew Stuart
,
Michael B. Elowitz
(2023).
Principles of Computation by Competitive Protein Dimerization Networks
. In Review.
PDF
Cite
Ke Alexander Wang
,
Matthew E. Levine
,
Jiaxin Shi
,
Emily Fox
(2022).
Learning Absorption Rates in Glucose-Insulin Dynamics from Meal Covariates
. NeurIPS Timeseries for Health Workshop 2022.
PDF
Cite
Matthew E. Levine
,
Andrew M. Stuart
(2022).
A Framework for Machine Learning of Model Error in Dynamical Systems
. Communications of the American Mathematics Society.
PDF
Cite
Peter D. Sottile
,
David J. Albers
,
Peter E. DeWitt
,
Seth Russell
,
J N Stroh
,
David P. Kao
,
Bonnie Adrian
,
Matthew E. Levine
,
Ryan Mooney
,
Lenny Larchick
,
Jean S. Kutner
,
Matthew K. Wynia
,
Jeffrey J. Glasheen
,
Tellen D. Bennett
(2021).
Real-Time Electronic Health Record Mortality Prediction during the COVID-19 Pandemic: A Prospective Cohort Study
. JAMIA 2021.
PDF
Cite
Jami J. Mulgrave
,
Matthew E. Levine
,
David J. Albers
,
Joon Ha
,
Arthur Sherman
,
George Hripcsak
(2020).
Using Data Assimilation of Mechanistic Models to Estimate Glucose and Insulin Metabolism
.
arXiv:2003.06541 [physics, stat]
.
PDF
Cite
Elliot G. Mitchell
,
Esteban G. Tabak
,
Matthew E. Levine
,
Lena Mamykina
,
David J. Albers
(2019).
Enabling Personalized Decision Support with Patient-Generated Data and Attributable Components
.
arXiv:1911.09856 [stat]
.
PDF
Cite
D. J. Albers
,
M. E. Levine
,
M. Sirlanci
,
A. M. Stuart
(2019).
A Simple Modeling Framework For Prediction In The Human Glucose-Insulin System
.
arXiv:1910.14193 [q-bio]
.
PDF
Cite
David J. Albers
,
Paul-Adrien Blancquart
,
Matthew E. Levine
,
Elnaz Esmaeilzadeh Seylabi
,
Andrew Stuart
(2019).
Ensemble Kalman methods with constraints
.
Inverse Problems
.
PDF
Cite
DOI
Pooja M. Desai
,
Elliot G. Mitchell
,
Maria L. Hwang
,
Matthew E. Levine
,
David J. Albers
,
Lena Mamykina
(2019).
Personal Health Oracle: Explorations of Personalized Predictions in Diabetes Self-Management
.
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
.
PDF
Cite
DOI
D. J. Albers
,
M. Levine
,
L. Mamykina
,
G. Hripcsak
(2019).
The Parameter Houlihan: a solution to high-throughput identifiability indeterminacy for brutally ill-posed problems
.
arXiv:1902.01978 [q-bio, stat]
.
PDF
Cite
Pooja M. Desai
,
Matthew E. Levine
,
David J. Albers
,
Lena Mamykina
(2018).
Pictures Worth a Thousand Words: Reflections on Visualizing Personal Blood Glucose Forecasts for Individuals with Type 2 Diabetes
.
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
.
PDF
Cite
DOI
Matthew E. Levine
,
David J. Albers
,
Marissa Burgermaster
,
Patricia G. Davidson
,
Arlene M. Smaldone
,
Lena Mamykina
(2018).
Behavioral-clinical phenotyping with type 2 diabetes self-monitoring data
.
arXiv:1802.08761 [stat]
.
PDF
Cite
Matthew E. Levine
,
David J. Albers
,
George Hripcsak
(2018).
Methodological variations in lagged regression for detecting physiologic drug effects in EHR data
.
Journal of Biomedical Informatics
.
Cite
DOI
David J. Albers
,
Matthew E. Levine
,
Andrew Stuart
,
Lena Mamykina
,
Bruce Gluckman
,
George Hripcsak
(2018).
Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype
.
Journal of the American Medical Informatics Association: JAMIA
.
PDF
Cite
DOI
George Hripcsak
,
Matthew E. Levine
,
Ning Shang
,
Patrick B. Ryan
(2018).
Effect of vocabulary mapping for conditions on phenotype cohorts
.
Journal of the American Medical Informatics Association: JAMIA
.
Cite
DOI
Daniel J. Feller
,
Marissa Burgermaster
,
Matthew E. Levine
,
Arlene Smaldone
,
Patricia G. Davidson
,
David J. Albers
,
Lena Mamykina
(2018).
A visual analytics approach for pattern-recognition in patient-generated data
.
Journal of the American Medical Informatics Association: JAMIA
.
Cite
DOI
Matthew E. Levine
,
George Hripcsak
,
Lena Mamykina
,
Andrew Stuart
,
David J. Albers
(2017).
Offline and online data assimilation for real-time blood glucose forecasting in type 2 diabetes
.
arXiv:1709.00163 [math, q-bio]
.
PDF
Cite
David J. Albers
,
Matthew Levine
,
Bruce Gluckman
,
Henry Ginsberg
,
George Hripcsak
,
Lena Mamykina
(2017).
Personalized glucose forecasting for type 2 diabetes using data assimilation
.
PLoS computational biology
.
PDF
Cite
DOI
Lena Mamykina
,
Matthew E. Levine
,
Patricia G. Davidson
,
Arlene M. Smaldone
,
Noemie Elhadad
,
David J. Albers
(2017).
From Personal Informatics to Personal Analytics: Investigating How Clinicians and Patients Reason About Personal Data Generated with Self-Monitoring in Diabetes
.
Cognitive Informatics in Health and Biomedicine: Understanding and Modeling Health Behaviors
.
PDF
Cite
DOI
Lena Mamykina
,
Matthew E. Levine
,
Patricia G. Davidson
,
Arlene M. Smaldone
,
Noemie Elhadad
,
David J. Albers
(2016).
Data-driven health management: reasoning about personally generated data in diabetes with information technologies
.
Journal of the American Medical Informatics Association: JAMIA
.
Cite
DOI
Matthew E. Levine
,
David J. Albers
,
George Hripcsak
(2016).
Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data
.
AMIA … Annual Symposium proceedings. AMIA Symposium
.
Cite
Matthew E. Levine
,
Lena Mamykina
(2016).
Bridging a Gap Between Data Science Research and Health DIY Movement
.
ACM SIGCHI Conference on Human Factors in Computing Systems, CHI 2016
.
PDF
Cite
Cite
×